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Abstract - A distributed strain sensing system utilizing a series of

identically written Bragg gratings along an optical fiber is examined for

potential application to Composite Armored Vehicle health monitoring. A

vacuum assisted resin transfer molding process was used to fabricate a

woven fabric E-glass�composite panel with an embedded fiber optic strain

sensor. Test samples machined from the panel were mechanically tested

in 4-point bending. Experimental results are presented that show the

mechanical strain from foil strain gages comparing well to optical strain

from the embedded sensors. Also, it was found that the distributed strain

along the sample length was consistent with the loading configuration.

INTRODUCTION

Sensors embedded in a composite material can be used to monitor the manufacturing

process and for structural health monitoring in critical applications. Although various

sensors are available, optical fibers are the predominant choice due to their small size and

greatest compatibility with the host material. Three of the most common type of optical

fiber sensors are the Intrinsic Fabry-Perot Interferometer, Extrinsic Fabry-Perot

Interferometer, and Bragg grating [1]. The most advantageous sensor is the Bragg

grating sensor because its simple construction leaves the strength of the optical fiber

intact and strain levels can be deduced from optical wavelength shifts. Recently a fiber

optic strain sensor system has been developed [2,3] which allows for a series of identical

Bragg grating sensors to be written on a long section of optical fiber and be read

individually. Each sensor on the optical fiber is read using a system that establishes the

location and wavelength (and thus strain) of each grating. With this system about 500

measurement locations on a 8m length of optical fiber can be made with the Bragg

grating sensors spaced from 12.7mm to 25.4mm apart. The high density of strain

measurements along one optical fiber gives this system potentially high sensor coverage

on a structure with minimal weight. This optical strain sensor system has been applied to

measuring strain in coupons of tensile-loaded graphite-composites [4] and is being

examined for use in the X-33 Re-useable Launch Vehicle [5]. Another potential



applicationof this optical strainsensorsystemis for healthmonitoring of aComposite
Armored Vehicle (CAV) which is an advancedtechnology demonstratorof an all-
compositeground combat vehicle. The CAV upper hull is made of a glass/epoxy
laminatewith embeddedceramictiles that serveasarmor. Multiple distributedstrain
measurementswould helpmonitor the structuralhealthof suchavehicle anddetermine
damagelocationandseverity. In this paper,we examinethepotentialapplicationof this
optical strain sensorsystem by manufacturing glass/epoxycomposite sampleswith
embeddeddistributedfiberoptic strainsensorsandconductingmechanicaltests.

FIBER OPTIC SENSORS SYSTEM

A fiber Bragg grating is a periodic modulation of the refractive index in the core of a

single mode optical fiber. This modulation is photo-induced by exposing the fiber to an

interference pattern between two UV laser beams. By changing the angle between the

two beams the modulation of the interference pattern can be controlled. The resulting

Bragg sensor reflects a narrow frequency band of light proportional to the periodic

modulation. The center frequency reflected is )_ = 2nA [6], where n is the index of

refraction of the fiber core, and A the grating spacing. The strain is then defined as

E = (_--_b)/_b, where _b is the baseline wavelength. When the strain equation is corrected

for material properties, it becomes [5]

(1)

where the constant K is a function of the refractive index, Poisson's ratio, and strain-optic

constants of the fiber, _ is the thermal-optic coefficient, and AT is the change in

temperature.

The system [2] used to read the multiple Bragg gratings is illustrated in figure 1. This

system uses a frequency (or wavelength) swept laser-diode as a light source. Laser-light

intensity, reflected from the air gap, reference fiber, and Bragg grating produce an

interference that is detected and recorded for post processing. Intensity data processing

yields grating location and wavelength or strain. The processing involves computing the

amplitude of the Fourier transform of the intensity data and computing the power spectra

of individually windowed gratings to obtain grating peak wavelength. The peak

wavelength and base wavelength are then used to calculate strain.

COMPOSITE PANEL

A vacuum assisted resin transfer molding process was used to manufacture an E-

glass/epoxy composite panel 10-plies thick and approximately 1050.0 x 340.0 x 6.35 mm

in size. The material used in the panel was a 24 oz woven fabric and the resin was Dow

411-350 epoxy vinyl ester. In the manufacturing process a length of optical fiber with

Bragg grating sensors was placed on the first ply and held in place with a small dot of hot

2



gluebeforelayingdownthesecondply. A schematicof thepanel,in Figure2 showsthe
approximatelocationsof theoptical fibers, thedashedlines,andthegrayedareas,thetest
samplesthatwerecut from thepanel. Theoptical fibersexitedthe compositelay-upand
extendedapproximately30cm from theedgeof thepanel. Theseoptical fiber extensions
wereconnectedto the distributedstrainsensorsystem. The smallerwidth test samples
wereinitially cut to awidth of 5.08cm andthenre-machinedto awidth of 4.45cm to fit
the4-point loadingfixture. Thetwo largersize test sampleswere approximately15.24
cm wide. In processof handlingthepanel,two of thefiber extensionsbroke andin the
machiningprocessall but threefiber extensionsfailed. Thethreeremainingtest samples
(of thinnerwidth) were straingauged.Two gageswere applied,oneto the top andone
on thebottom,oppositeeachotheralongthecenterof thetest sample. Figure3 showsa
straingageononesideof thecouponandFigure4 showsanoptical fiber exitingthe end
of thecoupon.

TESTING AND MEASUREMENTS

Each sample was tested under a 4-point bend arrangement. The testing arrangement and

sample dimensions are illustrated in Figure 5. The supports were spaced 25.4 cm apart

and two loading points were spaced 10.16 cm apart. Maximum deflection was limited to

the height of the supports on the 4-point loading fixture and was approximately 32 mm.

The deflection of a test sample (without strain gages) was 30.5 mm at a load of 510 lbs.

During testing, the samples were loaded in 50 lb increments, up to loads of 350 to 500

lbs. At each increment, strain gage output, fiber optic-strain data, and testing machine

cross head displacement were recorded. The fiber optic strain sensor was on the roller

support side of the test fixture and thus the Bragg gratings were subjected to elongation
or tensile loads.

These tests were conducted at room temperature and the duration of each measurement

was on the order of a minute. It was therefore assumed that the temperature was constant

and could be eliminated from equation (1). The constant K in this equation, a function of

the optical fiber, was measured by equating mechanical strain to fiber optic-strain for a

single optical fiber sensor, in a separate calibration experiment. This optical fiber sensor

was stretched with a micrometer displacement stage while elongation and optical sensor

readings were taken. A value of K=1.45 was obtained and used to convert fiber optic
sensor measurements to strain.

Results

Testing machine cross head displacement and tensile strain gage readings are shown in

Figures 6 and 7, respectively, for each sample. A linear range of displacement and strain

can be seen in these plots up to approximately 300 lbs. After this load level the

displacements and strains are nonlinear. For sample C, composite fiber breaking could

be heard at the higher load levels and a slight curvature was evident for each sample

when it was removed from the testing machine, thus the test samples yielded. A pre-



yield valuefor the materialmoduluswascalculatedusingEuler-Bemoulli beamtheory.
ThemodulusvalueobtainedwasE = 26.61GPa(3.86xl06psi).

Figure 8 showsthe amplitudeof the Fouriertransformof the raw datafor sampleA, at
100lbs. It showsthereflectionof 29Bragggratingsplottedagainstits locationalongthe
optical fiber. Thelargepeakat location2.81m is areflection from the endof thefiber
andcorrespondsapproximatelyto the endof the sample.The Bragg gratingwidth and
spacingare5.0 mm and 15mm, respectively. An examplespectrumof a windowed
grating,oneunstrainedandanotherstrainedis shownin Figure9. The spectrumfor the
strainedgratingis not uniform andexhibitsa spectrumbroadening.At first, we thought
thatthis broadeningcould in partbedueto therollerspinchingthe optical fibers. Upon
examination,it wasfoundthatthis broadeningoccurredonly for thegratingsbetweenthe
rollersandnot for theonesbeforeor afterthestrainedregion. Thus,thepinchingwasnot
causingthe broadening. It is probablethat the optical fiber is most likely being loaded
non-uniformlyandhasastraindistributionacrossits diameter.Thisnon-uniformloading
is dueto the loadinggeometryandcausesthe inducedstrainto changeasa function of
the distancefrom the centerhorizontal-axis of the material. This non-uniform strain
causesa strain-inducedbirefringencein the optical fiber that causesthe polarizedlight,
injectedinto thefiber for sensing,to bemodulated[7]. Thus,thebroadeningmayin part
bedueto anon-uniformstrainacrossthe diameterof the optical fiber. Theresultsshow
thatthis broadeningdid not inhibit determiningthe peakwavelength. For the example,
theunstrainedgratinghasapeakat awavelengthof 1557.111nm andthestrainedgrating
hasa peak wavelengthat 1559.812nm. Using equation(1), the resulting strain for
location2.628is 2.52xl03g in/in. Similarcalculationswereusedto calculatestrainfrom
otherBragggratingson eachof thesamples.Figures10, 11,and12comparestraingage
readingsto aBragggratinglocatedat approximatelythecenterof thesample. Thestrain
differencefor SampleA hasa strainvariationbetweenmechanicalandoptical strainof
about2-3%. For SampleB, the straindatainitially compareswithin about8%andthen
changesto about15%. Sincethe opticalstrainatthe upperloadsis parallel to the strain
gage reading, it is possible that the optical fiber slipped within the matrix of the
composite. SampleC showsa strainvariation of about6% exceptthe lastpoint. An
examinationof the Bragggratingfor this point andload level showedthat its reflection
was uneven acrossthe width of the sensorand thus true strain readings would be
questionable.

Figures13,14,and 15showtheopticalstraindistributionalongthe lengthof thesample
for loadlevelsof 0, 100,200,and300 lbs. For reference,a schematicof the sampleand
its loadingpointsis positionedin eachgraph. Thepositionof this schematicis basedon
thestraindistributionandthat thestrainis zerooutsidethe supportpoints. For example,
thebottomsupports,in Figure 13,arelocatedat approximately2.77m and2.51m. This
differenceis 0.26m andis approximatelyequalto 0.25m, the distancebetweenloading
points. The strainsacrossthe sample increaseswith load asexpectedbut arenot as
smoothas expected. This is may be due, in part, to the weave in the fabric of the
compositematerialproducinglocal strainvariations.
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The strain at location 2.66 m, in Figure 13 is initially consistentwith other gratings
aroundit, butbecomesinconsistentathigher loads. Closerexaminationshowedthat the
width of the reflectionbecamenarrowerfor increasingload,possiblydueto aweakness
in theoptical fiber or local de-bondingof the sensor.Allowing for thesevariationsthe
straindistributionsareconsistentwith loading.

DISCUSSION

The results illustrate that it is feasible to use distributed strain sensors to measure tensile

bending strain in woven glass/epoxy composite material. Mechanical strain

measurements compared well with optical strain measurements and strain distributions

along the length of the test sample were reasonable. Disagreement between optical and

mechanical strain readings may be due in part to placement of the sensor relative to the

weave of the composite fabric and that the optical sensor and mechanical stain gage were

not identically co-located.

Although the measurement results indicate feasibility, the manufacturing of components

with embedded fiber optic sensors requires more attention. The optical fibers exiting the

manufactured panel were very fragile and some failed due to handling. Also, the long

fiber optic leads exiting the ends of the panel could not be machined to a finished edge

because of the optical fiber extensions. Thus ingress and egress of the optical fiber from

the composite material is a major problem. Another problem or area of concern is

durability of the fiber optic sensors. If the optical sensor slips within the composite

matrix then inaccurate strain readings would result. However, losing one or two optical

sensors along a long series of sensors may be acceptable. Also of concern is that the

system can not measure dynamic strains, as the strain must be held constant for the

duration of the laser scan, which typically last a few seconds. However, technology

improvements may result in higher laser sweep-speeds and make dynamic measurements

possible.
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Figure 2. Layout of E-glass composite panel with embedded optical fiber sensors. Panel

thickness is 10 ply and approximately 6.35mm. Dashed lines are the position of the

optical fibers located in the thickness direction between the 1 st and 2nd ply.



Figure3. Closeup of embeddedsensorpanelwith attached6.35mm(1/4 inch), 350Ohm
straingage.

Figure4. Closeup at endof sampleshowingthe fiber optic egressionfrom the sample.
Thepencil is pointingto thefiberoptic sensor.
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